EMD Based on Independent Component Analysis and Its Application in Machinery Fault Diagnosis

نویسندگان

  • Fengli Wang
  • Deyou Zhao
چکیده

Local rub-impact is the common fault in rotating machinery and results in impact and friction between rotor and stator. The vibration signal due to impact and friction is always non-stationary which includes three components, namely, the rub-impact signal, the background signal and the noise signal. EMD (Empirical mode decomposition) is based upon the local characteristic time scale of signal and could decompose the complicated signal into a number of IMFs (intrinsic mode functions). However, because the weak rub-impact signal is always submerged in the background signal and noise signal. The EMD procedure will generate the components redundancy. In order to solve the problem, a novel method combining with independent component analysis (ICA) and EMD is proposed. ICA is introduced into the EMD procedure, so that the components are orthogonal to each other and the components redundancy can be cut down. In the end, a much better decomposition performances can be obtained. Furthermore, integration of EMD with Hilbert envelope analysis is applied to component instantaneous amplitude in order to obtain envelope spectra from which the mechanical fault can be diagnosed. The analysis results from the rub-impact vibration signals show that the proposed method can be applied to the machinery fault diagnosis effectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain

The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JCP

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011